The discovery of fullerenes in 1985 sparked the interest of researchers in novel crystalline forms of carbon. Nobel laureate Richard Smalley, co-discoverer of fullerenes, was a strong advocate of carbon nanotube research and his endorsement strengthened the field. The results of such an extensive effort quickly demonstrated the unique properties of these carbon structures, as well as a cornucopia of potential applications in many fields of technology.
The unique properties of carbon nanotubes are due to their distinctive structure, which is composed of C-C bonds more closely related to those in graphite than to those in diamond. Fullerenes, graphene, and nanotubes also have carbon bonds with sp2 hybridization as graphite. The well-known strength of carbon nanotubes is related to the intrinsic strength of the sp2 carbon-carbon bonds. Young's modulus values near 1,000 GPa have been predicted or measured on individual nanotubes or nanotubes ropes. This is around 50 times higher than the modulus of steel, which coupled with their light weight make carbon nanotubes an attractive filler for high-strength composites.
The electronic properties of carbon nanotubes are also astounding. Depending on their geometric structure they can either be metallic or semiconducting since, as discussed below, slight changes in the geometric configuration can result in significant changes in electronic structure. This offers materials scientists the opportunity to design -- at the nano-scale -- the best material for each specific application.
Many of the potential applications of Nanotubes are still limited by the complexity involved in their synthesis, dispersion, and manipulation at the industrial scale. These are all areas in which the involvement of Chemical Engineers with background in catalysis, reactor design, separation processes, and colloidal chemistry is highly valuable.
Webinar content is available with the kind permission of the author(s) solely for the purpose of furthering AIChE’s mission to educate, inform and improve the practice of professional chemical engineering. The content reflects the views, opinions, and recommendations of the presenters. AIChE does not warrant or represent, expressly or by implication, the correctness or accuracy of the content of the information presented. All other uses are forbidden without the express consent of the author(s). For permission to re-use, please contact chemepermissions@aiche.org. Attendee contact information, including email addresses, will be shared with AIChE, with the option to unsubscribe from future communications.
AIChE Practice+ provides learners with opportunities to work on real-world challenges through industry internships and competitions.
With AIChE Career Discovery®, we'll help you to identify aptitudes and skills you’ll need in order to achieve your full potential at various career stages.
AIChE Credential validates your proficiency with potential employers in areas such as process intensification, safety, sustainability and others.