Tools for Analyzing and Repairing Biological Systems | AIChE

Tools for Analyzing and Repairing Biological Systems

Understanding and repairing complex biological systems, such as the brain, requires technologies for systematically observing and controlling these systems. We are discovering new molecular principles that enable such technologies. For example, we discovered that one can physically magnify biological specimens by synthesizing dense networks of swellable polymer throughout them, and then chemically processing the specimens to isotropically swell them. This method, which we call expansion microscopy, enables ordinary microscopes to do nanoimaging – important for mapping the brain across scales.

Expansion of biomolecules away from each other also decrowds them, enabling previously invisible nanostructures to be labeled and seen. As a second example, we discovered that microbial opsins, genetically expressed in neurons, could enable their electrical activities to be precisely controlled in response to light. These molecules, now called optogenetic tools, enable causal assessment of how neurons contribute to behaviors and pathological states, and are yielding insights into new treatment strategies for brain diseases.

Finally, we are developing, using new strategies such as robotic directed evolution, fluorescent reporters that enable the precision measurement of signals such as voltage and calcium. By fusing such reporters to self-assembling peptides, they can be stably clustered within cells at random points, distant enough to be resolved by a microscope, but close enough to spatially sample the relevant biology. Such clusters, which we call signaling reporter islands (SiRIs), permit many fluorescent reporters to be used within a single cell, to simultaneously reveal relationships between different signals. We share all these tools freely, and aim to integrate the use of these tools so as to enable comprehensive understandings of neural circuits.


Webinar content is available with the kind permission of the author(s) solely for the purpose of furthering AIChE’s mission to educate, inform and improve the practice of professional chemical engineering. The content reflects the views, opinions, and recommendations of the presenters. AIChE does not warrant or represent, expressly or by implication, the correctness or accuracy of the content of the information presented. All other uses are forbidden without the express consent of the author(s). For permission to re-use, please contact chemepermissions@aiche.org. Attendee contact information, including email addresses, will be shared with AIChE, with the option to unsubscribe from future communications.

Once the content has been viewed and you have attested to it, you will be able to download and print a certificate for PDH credits. If you have already viewed this content, please click here to login.
  • AIChE Pro Members - Free
  • AIChE Graduate Student Members - Free
  • AIChE Undergraduate Student Members - Free
  • AIChE Explorer Members - $109.00
  • Non-Members - $109.00
Do you already own this? Log In for instructions on accessing this content.
  • Source:
    Northeastern University Graduate Student Series
  • Language:
    English
  • Skill Level:
    Intermediate
  • Duration:
    1 hour
  • PDHs:
    1.00